» » Что такое фотосинтез? Применение фотосинтеза

Что такое фотосинтез? Применение фотосинтеза

Фотосинтез — это процесс, применяемый растениями, водорослями и некоторыми бактериями для использования энергии солнечного света и превращения ее в химическую энергию. В этой статье описываются общие принципы фотосинтеза и применение фотосинтеза для разработки чистых видов топлива и источников возобновляемой энергии.

Типы фотосинтеза

Существует два типа процессов фотосинтеза: оксигенный фотосинтез и аноксигенный фотосинтез. Общие принципы аноксигенного и оксигенного фотосинтеза очень схожи, но наиболее распространенным является оксигенный фотосинтез, который наблюдается у растений, водорослей и цианобактерий.

Во время оксигенного фотосинтеза световая энергия способствует переходу электронов из воды (H2O) в углекислый газ (CO2). В результате реакции образуется кислород и углеводороды.

Оксигенный фотосинтез можно назвать процессом противоположным дыханию в котором происходит поглощение углекислого газа, производимого всеми дышащими организмами, и выделение кислорода в атмосферу.

С другой стороны, в аноксигенном фотосинтезе в качестве донора электронов используется не вода. Этот процесс обычно наблюдается у таких бактерий как фиолетовые бактерии и зеленые серные бактерии, которые в основном встречаются в различных водных средах.

При аноксигенном фотосинтезе кислород не продуцируется, отсюда и название. Результат реакции зависит от донора электронов. Например, многие бактерии используют в качестве донора сероводород и в результате такого фотосинтеза образуется твердая сера.

Хотя оба типа фотосинтеза являются сложными и многоступенчатыми процессами их можно приблизительно представить в виде приведенных ниже химических уравнений.

Оксигенный фотосинтез записывается следующим образом:

6CO2 + 12H2O + Световая энергия → C6H12O6 + 6O2 + 6H2O

Здесь шесть молекул углекислого газа (СО2) объединяются с 12 молекулами воды (Н2О) с использованием световой энергии. В результате реакции образуется одна молекула углевода (C6H12O6 или глюкозы) и шесть молекул кислорода и шесть молекул воды.

Аналогично различные реакции аноксигенного фотосинтеза могут быть представлены в виде одной обобщенной формулы:

CO2 + 2H2A + Световая энергия → [CH2O] + 2A + H2O

Буква A в уравнении является переменной, а H2A представляет потенциальный донор электронов. Например, А может быть серой в сероводороде (H2S).

Фотосинтетический аппарат

Ниже приведены клеточные компоненты, необходимые для фотосинтеза.

Пигменты

Пигменты — это молекулы, которые придают цвет растениям, водорослям и бактериям, но они также ответственны за эффективное улавливание солнечного света. Пигменты разных цветов поглощают разные длины волн света. Ниже представлены три основные группы.

  • Хлорофиллы — это пигменты зеленого цвета, способные улавливать синий и красный свет. Хлорофиллы имеют три подтипа, называемые хлорофиллом a, хлорофиллом b и хлорофиллом c. Хлорофилл а встречается на всех фотосинтезирующих растениях. Существует также бактериальный вариант, бактериохлорофилл, который поглощает инфракрасный свет. Этот пигмент в основном наблюдается в пурпурных и зеленых серных бактериях, которые выполняют аноксигенный фотосинтез.
  • Каротиноиды — это красные, оранжевые или желтые пигменты, которые поглощают сине-зеленый свет. Примерами каротиноидов являются ксантофилл (желтый) и каротин (оранжевый), благодаря которым морковь приобретает свой цвет.
  • Фикобилины — это красные или синие пигменты, которые поглощают длинные световые волны, которые не так хорошо поглощаются хлорофиллами и каротиноидами. Их можно наблюдать в цианобактериях и красных водорослях.

Пластид

Фотосинтетические эукариотические организмы содержат в цитоплазме органеллы, называемые пластидами. Пластиды с двумя мембранами в растениях и водорослях рассматриваются как первичные пластиды, а пластиды с множественными мембранами, найденные в планктоне, называются вторичными пластидами, согласно статье в журнале Nature Education авторов Чонг Синь Чан и Дебашиш Бхаттачарья, исследователи из Университета Рутгерса в Нью-Джерси.

Пластиды обычно содержат пигменты или могут хранить питательные вещества. Бесцветные и непигментированные лейкопласты хранят жиры и крахмал, в то время как хромопласты содержат каротиноиды, а хлоропласты содержат хлорофилл.

Фотосинтез происходит в хлоропластах; в частности, в областях граны и стромы. Грана — это уложенные стопками плоские пузырьки или мембраны, которые называются тилакоидами. В гранах находятся все фотосинтетические структуры. Именно здесь происходит перенос электронов. Пустые пространства между столбцами граны составляют строму.

Хлоропласты подобны митохондриям, энергетическим центрам клеток, поскольку они имеют собственный геном или коллекцию генов, содержащихся в циклической ДНК. Эти гены кодируют белки, необходимые для органеллы и фотосинтеза. Считается, что как и митохондрии, хлоропласты произошли из примитивных бактериальных клеток в процессе эндосимбиоза.

Антенны

Молекулы пигмента связываются белками, которые позволяют им двигаться в направлении света и друг к другу. Согласно публикации Вима Вермааса, профессора Аризонского государственного университета, набор из 100-5000 молекул пигмента представляет собой «антенны». Эти структуры захватывают световую энергию от солнца в виде фотонов.

В конечном счете световая энергия должна быть перенесена в пигмент-белковый комплекс, который может преобразовывать его в химическую энергию в виде электронов. В растениях, например, световая энергия переносится на хлорофилловые пигменты. Переход на химическую энергию осуществляется, когда пигмент хлорофилла вытесняет электрон, который затем может перейти к соответствующему реципиенту.

Реакционные центры

Пигменты и белки, которые преобразуют световую энергию в химическую энергию и начинают процесс переноса электрона, известны как реакционные центры.

Процесс фотосинтеза

Реакции фотосинтеза растений делятся на требующие наличия солнечного света, и не требующие его. Оба типа реакций протекают в хлоропластах: светозависимые реакции в тилакоидах и светонезависимые реакциях в строме.

Светозависимые реакции (световые реакции), когда фотон света попадает в реакционный центр и молекула пигмента, такая как хлорофилл, высвобождает электрон. При этом электрон не должен возвратиться в свое первоначальное положение, а этого непросто избежать, поскольку теперь хлорофилл имеет «электронную дырку», которая притягивает близлежащие электроны.

Освобожденному электрону удается «уйти», за счет перемещения по электронной транспортной цепи, которая генерирует энергию, необходимую для получения АТФ (аденозинтрифосфата, источника химической энергии для клеток) и НАДФ. «Электронная дырка» в исходном пигменте хлорофилла заполняется электронами из воды. В результате этого в атмосферу выделяется кислород.

Темновые реакции (которые не зависят от наличия света и известные также как цикл Кальвина). В процессе темновых реакций производятся АТФ и НАДФ, которые являются источниками энергии. Цикл Кальвина составляют три этапа химической реакции: фиксация углерода, восстановление и регенерация. В этих реакциях используется вода и катализаторы. Атомы углерода из двуокиси углерода «фиксируются», когда они встраиваются в органические молекулы, которые в конечном счете образуют трехуглеродистые углеводы (легкие сахара). Затем эти сахара используются для производства глюкозы или рециркулируют, чтобы снова инициировать цикл Кальвина.

Фотосинтез в будущем. Применение фотосинтеза

Фотосинтезирующие организмы — это потенциальное средство получения экологически чистого топлива, такого как водород или даже метан. Недавно исследовательская группа в университете Турку в Финляндии применила способность зеленых водорослей производить водород. Зеленые водоросли могут продуцировать водород в течение нескольких секунд, если они сначала находятся в условиях отсутствия света и кислорода, а затем подвергаются воздействию света. Команда разработала способ продлить водородное производство водорослей на срок до трех дней, как сообщается в публикации 2018 в журнале Energy & Environmental Science.

Ученые также добились успехов в области искусственного фотосинтеза. Например, группа исследователей из Калифорнийского университета в Беркли разработала искусственную систему для улавливания углекислого газа с использованием полупроводниковых нанопроволок и бактерий. Сочетание набора биосовместимых светопоглощающих нанопроволок с определенной популяцией бактерий за счет используя энергию солнечного света преобразует углекислый газ в топливо или полимеры. Команда ученых опубликовала свой проект в 2015 году в журнале Nano Letters.

В 2016 году ученые из этой же группы опубликовали исследование в журнале Science, в котором описали еще одну систему искусственного фотосинтеза, в которой специально созданные бактерии применялись для производства жидкого топлива с использованием солнечного света, воды и двуокиси углерода. В целом, растения могут использовать только 1 % солнечной энергии и применять его во время фотосинтеза для получения органических соединений. Напротив, система искусственного фотосинтеза смогла использовать 10 % солнечной энергии для производства органических соединений.

Исследование природных процессов, таких как фотосинтез, помогает ученым в разработке новых способов использования различных источников возобновляемой энергии. Солнечный свет повсеместно используется растениями и бактерии в фотосинтезе поэтому искусственный фотосинтез является логичным шагом для создания экологически чистого топлива.

 

В статье использовались материалы livescience.com

Перевод: Анастасия Литвинова

(Просмотрели63 | Посмотрели сегодня 1 )

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.